Abstract

Agricultural extension programs or pilots based on the Farmer Field School (FFS) approach are being implemented in many developing countries in Asia and Africa. Evidence from the Philippines and Indonesia, two key areas in implementing this extension effort, shows that fiscal unsustainability of the FFS if applied on a large scale is a risk that cannot be ignored. Because of high costs per trained farmer, the amount of funding for extension in the Philippines cannot provide for significant farmer outreach. Farmer-led field schools are viewed by some as a way out of this fiscal dilemma if part of the cost is shifted to the community, but farm survey data from Indonesia indicate that the extent of the takeover of training responsibilities by farmers has been minor. Furthermore, farmer-led schools are still not funded mainly by community resources. The results suggest a need for great selectivity and caution in initiating FFS pilots, with a focus on the fiscal sustainability of the program if the intention is to scale up these activities.

On farmer field schools (FFS)

(1) It is possible to rely on NGOs to enhance fiscal sustainability, but some NGO’s may themselves depend on public funds, and their reach to wide segments of the farming population is limited.

(2) Van de Fliert’s (1993) careful, qualitative evaluation of Indonesia’s early FFS experiences covering a limited area during the first cycle of its FFS-IPM program suggests that the ineffectiveness of informal “horizontal communications” was an issue in affecting diffusion of FFS-acquired knowledge by field school graduates at that time. For the Philippines, an in-depth study by Rola, et. al. (2000) indicates that there are no significant transfers of knowledge of FFS-acquired knowledge from FFS graduates to other farmers. A study of an FFS pilot in Kenya (Loevinsohn, et al., 1998) suggests that there has been some sharing of information by FFS graduates with other farmers (“diffused” farmers) who have shown interest in these discourses and claimed to have adopted some of the practices discussed. This Kenya study, which was conducted one season after field schools had been completed, did not assess farmers’ understanding of the information shared and its field impact, and did not compare "diffused" farmers to a control group. Consequently, this is not conclusive evidence that the FFS pilot in Kenya led to a significant process of informal diffusion of information from FFS graduates to their non-FFS counterparts.

The Philippine Case

(3) QFM notes that at existing FFS spending levels in the Philippines, it would take over 15 years to have a million Filipino farmers attend at least one FFS at a total cost of US$ 47.6 million. These estimates assume that (a) annual program spending remains constant at US$ 3.0 million, or the government’s allocation in year 2000 as indicated in the Community IPM web-site, and (b) FFS costs remain at US$ 47.6 per trained farmer. Information available suggests that there was very little, if any, direct farmer contribution to the funding of this Philippine program. These computed costs per farmer are within the range of what has been budgeted by FFS promoters for other mainstream prototype FFS.
projects that are intended for eventual scaling-up and are expected to rely mainly on public budget and external donor financing. In Africa, for instance, an International Fund for Agricultural Development (IFAD) pilot project (Kenya, Tanzania, Uganda) indicates estimated FFS costs of about $53 per trained farmer, excluding the costs of trainers salaries (IFAD, 1998).

The Indonesia Case

(4) There are questions on whether FFS training by farmer-trainers is likely to continue on a significant scale with the end of the World Bank-assisted IPM Training Project in 1999. In any case, the government is still expected to allocate resources for FFS activities in the post-project phase, but at a lower level. With farmer trainers, the expectation is for the government to provide some back up assistance only, like specialists’ services and learning materials.

(5) The two datasets used to analyze FFS in Indonesia are the 1999 SEARCA and 1999 World Bank Surveys. The SEARCA evaluation, commissioned and assisted by Indonesia's National IPM Program Secretariat, administered a farm-level survey in six Indonesian provinces that were key beneficiaries of the National IPM training program. In all, there are 769 FFS graduates and 423 non-FFS farmers in the SEARCA sample. In order to ensure that the survey covered a reasonable number of FFS farmers with certain characteristics, i.e., women FFS participants and non-rice FFS graduates, some villages and/or respondents were purposively selected. Another criterion used for selecting FFS villages and respondents for the survey was whether the training was provided by non-government trainers (farmers or NGO’s). Oversampling of such trainers was necessary to ensure a sufficient number of respondents.

The 1999 World Bank survey revisited respondents who participated in a 1991 IPM-FFS survey conducted by the Center for Agro-Socio-Economic Research (CASER) in Bogor. Because program coverage was still limited, CASER’s household survey sampled the program’s pilot villages and graduates purposely. Non-FFS villages and households were selected randomly from the population of rice-growing areas and households, respectively. The total number of survey respondents was 454, of which 225 were FFS graduates at the time of the 1999 survey. Of these 454 respondents, 347 were randomly selected non-FFS households in 1991. Owing then to the baseline 1991 survey from which it is derived, the World Bank’s 1999 FFS Survey contains a disproportional number of PHP-trained FFS graduates from the IPM-FFS pilot phase (i.e., before 1994). Compared to the SEARCA survey however, this survey provides a less biased picture of the extent and kind of FFS coverage during the key program years (i.e., after 1994).

(6) In QFM, FFS costs are estimated at US$ 62 per Indonesian farmer. This estimate is calculated from (a) actual project costs for training, management information systems, and technical assistance of the Indonesian IPM Training Project and (b) an estimate by a World Bank team of 626,235 farmers trained by the program. If the training of pest observers and extension agents as FFS trainers (assumed at US$ 1,000 per trainer) were regarded as an investment, and if this cost together with the cost of technical assistance were removed from total project costs, then the cost of FFS training would amount to US$ 49 per farmer. These figures are compiled from SEARCA and World Bank project documents. These costs per FFS farmer are underestimates since they exclude the base salaries of employees at all levels of government who are employed in the program. The per-school costs indicated by Braun, et al. (2000) are lower because they exclude all program overhead costs.
References

